United States Department of Agriculture

Rate of Forage Yield Breeding Gains in a Red Clover Breeding Program

Systems

Nutrition

Forage

Environment

Heathcliffe Riday

U.S. Dairy Forage Research Center USDA Agricultural Research Service

Background

- Occasional breeding gain papers published
 - Usually compare varieties by release year
- Difficult studies to conduct

Figure 2. Forage production of red clover resulting from five decades of breeding for persistence and disease resistance. (Smith, 2000)

Table 2 Estimates of genetic gain in red clover breeding. † Woodfield and Brummer (2001), ‡ Data from Six trials planted 1986 to 1991 in Wisconsin, USA. (Smith *et al.* 1987-1994; Riday and Krohn 2010a), § Data from 1 Rotational Grazed red clover – tall fescue mixture trial established 2004 in Wisconsin, USA (Riday *et al.* 2007), ¶ Unpublished results from (Riday *et al.* 2007), a – released 1953 (Hollowell 1961); b – released 1973 (Smith *et al.* 1973); c – released 1987 (Smith *et al.* 1994); and d – unreleased experimental first tested in 1992 (Smith 2000).

Trait	Benchmark variety	Improved varieties	Genetic gain (% yr ⁻¹)		
DM yield†	G. Turoa	G. Hamua, Pawera	0.43		
DM yield [†]	G. Hamua	G. Colenso	0.21		
DM yield [†]	G. Pawera (4x)	G27 (4x)	1.39		
1 st post-seeding year DM yield‡	Lakeland ^a	Arlington ^b , Marathon ^c	0.41		
2 nd post-seeding year DM yield:	Lakeland	Arlington, Marathon	0.55		
3 rd post-seeding year DM yield‡	Lakeland	Arlington, Marathon	0.95		
Trial DM yield‡	Lakeland	Arlington, Marathon	0.60		
Establishment survival§	Lakeland	Arlington, Marathon, C328 ^d	0.94		
12-month survival§	Lakeland	Arlington, Marathon, C328	1.94		
24-month survival§	Lakeland	Arlington, Marathon, C328	1.43		
36-month survival¶	Lakeland	Arlington, Marathon, C328	2.78		
48-month survival¶	Lakeland	Arlington, Marathon, C328	1.32 (Riday, 2010)		

Fig. 1 Individual normalized plant fresh weights (standard deviations) plotted against the average of two normalized biomass yield scores (standard deviations) with fitted exponential function (fresh weight = $0.3784e^{0.475 \times \text{score}} + 1.923$) (pseudo- $R^2 = 0.79$)

(Riday, 2009)

- Visual score for biomass plant⁻¹
 - 3 to 5 time per year
 - 4 summers and 3 winters
 - 12 to 18 total observations per plant
- Common check cultivar and halfsib families statistically bind nurseries together across locations and years
- Each nursery x scoring date "cohort" is standardized = 9 x (vig. score/99th percentile obs.)

- Observed dead plants are given a zero vigor score

A more complex perspective

- 694,134 repeated individual plant vigor observations
- Taken on 66,649 unique plants
 - Of these 9,065 paternity identified using DNA markers
- From 1,824 entries (halfsib families, populations, or varieties)
 - With halfsib families derived from 104 polycrosses
 - Minimum of 40 plants entry⁻¹ to make selection decision
- Evaluated across 61 nurseries

Information used for Genotypic Selection

Red Clover Breeding Progress

Predicting Sward Performance from Visual Space-Plant Evaluations

Space-Planted Breeding Nursery Performance % of Marathon

Predicting Sward Performance from Visual Space-Plant Evaluations

Space-Planted Breeding Nursery Performance % of Marathon

Wisconsin Sward Variety Trial Performance % of Marathon

Predicting Sward Performance from Visual Space-Plant Evaluations

Space-Planted Breeding Nursery Performance % of Marathon

Genotypic vs. Phenotypic Selection

Genotypic Selection derived halfsib families

Phenotypic Selection derived halfsib families

* Year halfsib family was created

Genotypic vs. Phenotypic Selection

Genotypic Selection derived halfsib families

Phenotypic Selection derived halfsib families

Proportion

* χ^2 -test significant at P < 0.05

	2011	2012	2013	2014	Mean
	x-times more g	enotypic selectio	n derived halfsib	families than eq	ual expectation
Genotypic Selection derived halfsib families in Top 10% of tested families	6.19	4.88	0.73	5.63	3.34*

* geometric mean; different from 1 at *P* = 0.098

- Since 2006 ~ 180 halfsib families added to the evaluation program each year
 - By 2016 ~1,800 halfsib families to select among

Genotypic Selection		2012	2013	2014	2015	2016	Mean
No. of halfsib families selected	6	8	12	16	16	16	
Average age of halfsib family selected		4.8	5.6	5.0	4.4	3.4	4.8

- "Effective" genotypic selection intensity ~ $6/(4.8*18) \approx 2\%$
- Phenotypic selection intensity ~ 5% to 8%

Red Clover Breeding Progress

Conclusions

- Breeding works
- 4% estimated vigor breeding gains year⁻¹
 - 1% estimated sward biomass yield gain
- Genotypic selection program is 3.3 times more effective than the phenotypic selection program
- Halfsib families currently have an average 4.8 year utility in the program
- Apparent genetic gain lag time at the start of the program

Leading the world in integrated dairy forage systems research. U.S. Dairy Forage Research Center www.ars.usda.gov/mwa/madison/dfrc

